Penerapan Algoritma K-Nearest Neighbor (K-NN) untuk Klasifikasi Status Monitoring Automatic Pump Water Machine Studi Kasus: Industri Manufaktur

Authors

  • Indra Mora Indra Politeknik Negeri Batam Author
  • Adlian Jefiza Adlian Politeknik Negeri Batam Author

DOI:

https://doi.org/10.60036/zb0dph85

Keywords:

Sistem Industri, Klasifikasi , K- Nearest Neighbor (KNN)

Abstract

In the modern industrial world, real-time monitoring of system conditions is  crucial to maintain efficiency and prevent equipment damage. This research aims to classify industrial system conditions based on sensor data using the K Nearest Neighbors (KNN) algorithm. The data used consists of four main  parameters namely pressure, flow rate, voltage, and engine speed (RPM),  which are then classified into three conditions: Alert, Critical, and Normal.  Preprocessing is done with Min-Max normalization and division of data into  training and test data. The evaluation results show that the KNN method is  able to achieve an accuracy of 58% with a mean squared error (MSE) value of 
1.06 and an average cross-validation accuracy of 64%. These results show that  KNN is effective enough to be used as an initial method for industrial system  condition detection, although the classification performance for the Critical  category can still be improved. 

References

R. Hartanto, “Analisis Deteksi Kondisi Sistem Industri Menggunakan Algoritma K Nearest Neighbors,” Proyek Ujian Akhir Semester, 2025.

D. P. Utomo dan M. Mesran, “Analisis Komparasi Metode Klasifikasi Data Mining dan Reduksi Atribut Pada Data Set Penyakit Jantung,” J. Media Inform. Budidarma, vol. 4, no. 2, p. 437, 2020, doi: 10.30865/mib.v4i2.2080.

S. Sahar, “Analisis Perbandingan Metode K-Nearest Neighbor dan Naïve Bayes Clasiffier Pada Dataset Penyakit Jantung,” Indones. J. Data Sci., vol. 1, no. 3, pp. 79–86, 2020, doi: 10.33096/ijodas.v1i3.20.

Y. Yahya dan W. P. Hidayanti, “Penerapan Algoritma K-Nearest Neighbor Untuk

Klasifikasi Efektivitas Penjualan Vape (Rokok Elektrik) pada ‘Lombok Vape On,’” Infotek J. Inform. dan Teknol., vol. 3, no. 2, pp. 104–114, 2020, doi: 10.29408/jit.v3i2.2279.

J. Leskovec dan J. D. Ullman, Mining of Massive Datasets, Cambridge University Press, 2014.

M. M. Baharuddin, H. Azis, dan T. Hasanuddin, “Analisis Performa Metode K-Nearest Neighbor Untuk Identifikasi Jenis Kaca,” Ilk. J. Ilm., vol. 11, no. 3, pp. 269–274, 2019, doi: 10.33096/ilkom.v11i3.489.269-274. I. Pratiwi, “Analisis Performa Metode K-Nearest Neighbor (KNN) dan Cross-validation pada Data Penyakit Cardiovascular,” J. Ilm. Komputasi dan Inform., vol. 2, no. 1, pp. 2128, 2021. A. Zainuddin, “Evaluasi Akurasi KNN dalam Klasifikasi Sistem Monitoring Mesin

Industri,” J. Teknol. dan Informasi, vol. 5, no. 1, pp. 45–52, 2023. L. Anwar dan T. R. Hidayat, “Implementasi KNN pada Prediksi Kinerja Mesin Produksi,”

J. Rekayasa Sistem Industri, vol. 6, no. 3, pp. 213–220, 2022. H. Wibowo dan F. M. Rahayu, “Pengaruh Nilai K terhadap Akurasi KNN untuk Klasifikasi Multikategori,” Semin. Nas. Teknol. Informasi dan Komputer, vol. 9, no. 1, pp. 89–95, 2021.

Downloads

Published

2025-12-29