Prediksi Mortalitas Gagal Jantung Menggunakan PCA dan K-Nearest Neighbors: Analisis Komparatif Metrik Jarak

Authors

  • Feralia Fitri Politeknik Negeri Batam Author
  • Navessa Julieth Politeknik Negeri Batam Author

DOI:

https://doi.org/10.60036/qw66gg22

Keywords:

heart failure, prediction, mortality, K- Nearest Neighbor (KNN), PCA

Abstract

Heart failure is a condition in which the heart is unable to pump blood optimally to meet the body’s metabolic demands. Accurate prediction is essential to support timely medical intervention. This study examines the use of the K-Nearest Neighbors (KNN) method to classify heart failure patient outcomes based on nearest-neighbor data from the training set. The method is combined with Principal Component Analysis (PCA) for data dimensionality reduction to predict patient mortality, demonstrating that KNN is a simple and effective approach for medical data analysis.

References

[1] R. Andini and Y. P. Astuti, "Model infeksi HIV dengan pengaruh percobaan," J. Ilm. Mat., vol. 9, no. 2, pp. 437-446, 2021. [Online]. Available: https://media.neliti.com/media/publications/249234-model-infeksihiv-dengan-pengaruh-percob-b7e3cd43.pdf

[2] D. Chicco and G. Jurman, "Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone," BMC Med. Inform. Decis. Mak., vol. 20, no. 1, pp. 1-16, 2020, doi: 10.1186/s12911-020-1023-5.

[3] R. Burle, S. Gaurkhede, L. Dewangan, and U. Pacharaney, "Prediction of heart disease using machine learning algorithms," in 2024 IEEE Int. Conf. Interdiscip. Approaches Technol. Manag. Soc. Innov. (IATMSI), 2024, pp. 1-5, doi: 10.1109/IATMSI60426.2024.10502796.

[4] N. R. Rajalakshmi, J. Santhosh, J. Arun Pandian, and M. Alkhouli, "Prediction of chronic heart disease using machine learning," in Smart Innov. Syst. Technol., vol. 334, 2023, pp. 177-185, doi: 10.1007/978-981-19-8497-6_18.

[5] K. N. N. Untuk, "Implementasi algoritma klasifikasi K-Nearest Neighbor," Jurnal, vol. 6, no. 2, pp. 118-127, 2021.

[6] S. García, J. Luengo, and F. Herrera, "Instance selection," in Data preprocessing in data mining, vol. 72, Springer, 2015, doi: 10.1007/978-3-319-10247-4_8.

Downloads

Published

2025-12-29